
SDN101

Software Defined
Networking and You by
Timothy Serewicz

Version 1.0

c© CC-BY SA4

c© CC-BY SA4

The C-ALE (Cloud & Container Apprentice Linux Engineer) is a series of seminars held at existing conferences covering topics
which are fundamental to a Linux professional in the Linux Cloud and Container field of computing.

ii

This seminar will spend equal time on lecture and hands on labs at the end of each seminar which allow you to practice the
material you’ve learned.

This material makes the assumption that you have minimal experience with using Linux in general, and a basic
understanding of general industry terms. The assumption is also made that you have access to your own
computers upon which to practice this material.

More information can be found at https://c-ale.org/

This material is licensed under CC-BY SA4

SDN101 c© CC-BY SA4

Contents

1 Software Defined Networking 1

1.1 Why Software Defined Networking . 2

1.2 Software Defined Networking Explained . 7

1.3 OpenFlow . 18

1.4 OpenDaylight . 23

1.5 Open Source SDN Options . 25

1.6 Future Trends . 26

1.7 Labs . 27

iii

iv CONTENTS

SDN101 c© CC-BY SA4

Chapter 1

Software Defined Networking

1.1 Why Software Defined Networking . 2

1.2 Software Defined Networking Explained . 7

1.3 OpenFlow . 18

1.4 OpenDaylight . 23

1.5 Open Source SDN Options . 25

1.6 Future Trends . 26

1.7 Labs . 27

1

2 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.1 Why Software Defined Networking

Software Defined Networking and You

• What is Software Defined Networking?

• Why does SDN matter?

• Basic Functionality

• Common Solutions

• Future trends

In this presentation we will define Software Defined Networking (SDN) and explain why it has become so popular in a modern
production environment.

SDN101 c© CC-BY SA4

1.1. WHY SOFTWARE DEFINED NETWORKING 3

Why Should I Care?

• Flexibility

• Speed of configuration

• Money

Networking has been an essential part of information technology since the beginning and has become a massive industry.
Propitiatory hardware has software has been the only option for a production environment. As Linux started a revolution of
open-source software we have seen other aspects of IT leave vendor-locked solutions.

As open-source works across manufacturer boundaries we are able to view and manage an entire production network as a
whole instead of different steps and software for each vendor.

SDN101 c© CC-BY SA4

4 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Flexibility

• Multiple hardware vendors

• Whole network view

• Wire once, deploy many

• Open APIs

A traditional data center may have several different hardware vendors, each with their own proprietary software and configu-
ration tools. Without a single method to manage each solution the time, effort, and staff it takes to manage the environment
grows with each vendor deployed.

Where we once had single-purpose servers we now have virtualization which allows us to deploy and re-deploy instances and
application easily or even automatically. The network configuration needs to be as agile and responsive. The goal is to ”wire
once, deploy many”, meaning that after the physical cabling of the hardware the rest of the use and configuration can be done
via software, never needing a physical change of cables or local configuration.

The use of open APIs allows everyone, not just vendors, to provide and improve functionality. It also allows a single tool to
interact with all equipment.

SDN101 c© CC-BY SA4

1.1. WHY SOFTWARE DEFINED NETWORKING 5

Speed of Configuration

• Rapid provisioning

• Meet needs of data center virtualization

• Container Orchestration

Ten years ago it would be months from the time a project was approved until the equipment could be purchased, installed, and
configured. Networks have been the more difficult component to manage in the datacenter. There is often a dense jumble of
protocols which has lead to difficulty in evolving to meet changing needs. In the datacenter of today the expectation from an
agile business is reconfiguration in seconds.

Manual configuration cannot keep up and even automation tools may be to slow. The network needs to respond to other
aspects of the data center such as container orchestration and cloud computing.

SDN101 c© CC-BY SA4

6 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Lower Cost

• Operational cost reduction

• Security costs

• Migration away from non-SDN solutions

With automation and integration there is less need for trained staff to maintain and configure the network. While there is still a
need for highly-trained professionals to understand, troubleshoot, and configure the environment there are fewer needed with
mid-tier skills.

Security of the environment can affect the environment either through staff or the expense of unauthorized access. In traditional
situations there may not be a single view of every router, switch, and appliance. Keeping track of hardware, firmware, and
software compliance has been difficult. Understanding and making updates to each system was also expensive. With a
single-view of the environment and open APIs to update the security of the environment improves while lowering the cost of
management.

Existing environments may encounter higher cost to move away from non-SDN solutions as they add new software and need
to train staff in the short-term. A long-term look at the return on investment (ROI) compared with the total cost of ownership
(TCO) should show that a software defined network makes fiscal sense.

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 7

1.2 Software Defined Networking Explained

What is Software Defined Networking?

• Decouple the control plane

• Centralize management and reporting

• Programmable network infrastructure

We can break software defined networking down into three major sections. First we decouple the control plane from individual
switches. Second centralize the configuration and management. Finally we are able to view and manage the environment
programmatically.

SDN101 c© CC-BY SA4

8 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Decoupled Control Plane

• Packet handling rules

• Locality of data

• Greater flexibility

A typical switch could be considered to have three planes. A forwarding plane, sometimes called a data plane which
handles the packets themselves. This plane is typically of specialized transmitter ASICs and Ternary Content Addressable
Memory (TCAM), high-speed and expensive memory used to identify the packet and find the proper rule for forwarding to
other ports. A management plane which is what an administrator would interact with when making changes or checking
configuration. The third plane would be the control plane which holds the rules for packet handling and updates the
forwarding plane. The data plane forwards a copy of the packet to the control plane which builds and programs the routing
table into the ASIC route lookup tables.

When the local control plane is willing to make a call to an outside location we can centralize the management and reporting.

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 9

Centralize Management and Reporting

• Whole network control

• Virtual view of complete network

• Consolidate multiple products

Once the control plane and rules are decoupled from the local hardware the same rules and decisions can be made from a
central location. Remote interrogation of the switch and configuration changes become easy.

With the use of open APIs centralization can also aggregate multiple vendor’s products. This allows for a view of the complete
network regardless of how much equipment or locations may be involved. As well multiple products can be controlled from a
single tool incorporating security, access, and compliance among other roles.

SDN101 c© CC-BY SA4

10 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Programmable Network Infrastructure

• Optimize the data center

• Leverage Network Function Virtualization

• Easily detect and respond to issues

Once the entire network can be viewed and interacted with from a central location the next component is the ability to modify
the network programmatically. You could update every switch and appliance with a single command, locking down everything
for example. This ability to program the network is essential to meet the needs of automation and orchestration tools.

Companion products such as Network Function Virtualization (NFV) also are easy to integrate when the network is easy to
program.

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 11

Logical View of a Switch

Figure 1.1: Logical view of a switch

Here we see a logical view of a traditional switch. A series of ASICs which handle the forwarding of the packets as well as
some components of a switch which help decide where the packet is forwarded to.

SDN101 c© CC-BY SA4

12 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Control, Management, and Forwarding
Planes

Figure 1.2: Relationship between switch planes

A high level view of the communication between the data plane and the control plane when a packet not already in the TCAM
is encountered.

There are many companies who make switches. These graphics are not intended to represent all possible configurations, but
show a general flow of a packet. Please reference the documentation particular to each vendor, make, and model for specifics.

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 13

New Packet Steps

Figure 1.3: Detailed Steps for a new packet

This flow represents a high-level view of how an unknown packet is handled by a switch. This represents a reactive response
to new traffic. Flow tables can also be pre-populated.

1. A new packet is received

2. The packet does not match the current rules, sometimes called a table miss.

3. A copy of the packet is sent to the control plane. Some switches will buffer the packet and only send header to the
control plane.

4. The control plane builds a rule and populates the TCAM in the data plane. This flow modification reply contains lots of
data such as where the packet should go and the priority of the rule should multiple be found.

5. The packet is compared against the updates rules

6. The data plane forwards the packet to the appropriate ports or drops the packet

7. The packet leaves the switch to the destination or next hop in the network

SDN101 c© CC-BY SA4

14 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Known Packet Steps

Figure 1.4
Now that a packet is recognized there is no longer a need to ask the control plane. The very fast TCAM provides the rule.

1. A new packet is received

2. The packet matches a current rule, not requiring a new flow modification message

3. The data plane forwards the packet to the appropriate ports or drops the packet

4. The packet leaves the switch to the destination or next hop

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 15

Updating Rules

Figure 1.5

So we return to this graphic and have a better understanding of the communication between the parts of the switch. We can
also see that the management plane of the switch communicates with the control plane so it can build the rules and report
statistics. Its this management plane we would log into for local configuration.

SDN101 c© CC-BY SA4

16 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Abstraction of Control Plane

Figure 1.6: Use DAL for remote information

If we are making a request from the data plane to some other plane, why not have the local control plane act as a Device
Abstraction Layer (DAL). Sort of like a proxy which forwards the request to a control plane somewhere else.

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 17

Whole Network Monitoring and Control

Figure 1.7: Control and Monitor Whole Network

Here we are able to see how every one of the switches and network devices could call back to a centralized location. Now
that the control plane is decoupled we can view and manage from the centralized location.

SDN101 c© CC-BY SA4

18 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.3 OpenFlow

OpenFlow

• Specifications from Open Networking Forum

• Message layer

• State Machine

• System Interface

• Configuration

• Not just the destination IP or MAC

• Multiple tables may be referenced

OpenFlow allows us to control forwarding tables in access points, routers, and switches. As it can allow us to make decisions
on more than just the route it has become a common protocol in SDN.

The protocol can be divided into four basic components. The message layer manages and manipulates the messages and
represents the core of the protocol. Inside the message layer are sections which declare the version of protocol, where the
message ends and a unique transaction ID.

The state machine handles handshake, negotiation and feature discovery between controller and switch. Where most mes-
sages are asynchronous this component handles an ongoing relationship.

Providing services to other components, such as TLS/TCP, the system interface handles stream-orientated messages be-
tween controller and switch.

The fourth component, configuration is a language and utility to allow for a single interface for controller and switch configu-
ration as well as reliable parsing and evaluation of input.

SDN101 c© CC-BY SA4

1.3. OPENFLOW 19

OpenFlow Table

Figure 1.8
Here we see an example of what a particular flow table might look like and its interaction with a SDN controller. From this we
can see some of the parameters for decisions and actions for each of the matches.

More about the specification can be found here: https://www.opennetworking.org/software-defined-standards/

specifications

SDN101 c© CC-BY SA4

https://www.opennetworking.org/software-defined-standards/specifications
https://www.opennetworking.org/software-defined-standards/specifications

20 CHAPTER 1. SOFTWARE DEFINED NETWORKING

OpenFlow Table Entry

Figure 1.9
Here we see the details of a particular table entry. The classifier can of many different parameters including the ingress port.
The action then could be to drop the packet, enqueue, modify a parameter like a VLAN ID, or forward to something else
including another table or controller.

SDN101 c© CC-BY SA4

1.3. OPENFLOW 21

Open vSwitch

• Common in-memory switch

• Fully functional, focused on automated and dynamic network control

• Security, monitoring, QoS, and network protocol interaction of vendor-
provided switches

Open vSwitch (OVS) works well with multi-server virtualization environments. With support for configuration and migrating
that configuration across instances we can fully support a VM with network configuration and rules when it has been moved
to a new compute host.

As well we can use typical protocols such as NetFlow SFlow, OpenFlow, OSVDB, VLAN Isolation, traffic shaping

among several others. With the growth of OpenStack the connection between OVS and OpenFlow has become widely used
and tested.

More information can be found here: http://docs.openvswitch.org/en/latest/topics/

SDN101 c© CC-BY SA4

http://docs.openvswitch.org/en/latest/topics/

22 CHAPTER 1. SOFTWARE DEFINED NETWORKING

A Simple Switch and Hosts

Figure 1.10

In this example we will use Mininet http://mininet.org to create a simple virtual network. A local controller and three
hosts. The hosts leverage namespaces to present distinct IP addresses.

Several different network topologies are possible, this is a simple flat network.

SDN101 c© CC-BY SA4

http://mininet.org

1.4. OPENDAYLIGHT 23

1.4 OpenDaylight

OpenDaylight SDN Controller

Figure 1.11: OpenDaylight Stack

SDN101 c© CC-BY SA4

24 CHAPTER 1. SOFTWARE DEFINED NETWORKING

DLUX Network View

Figure 1.12: OpenDaylight DLUX Torus

SDN101 c© CC-BY SA4

1.5. OPEN SOURCE SDN OPTIONS 25

1.5 Open Source SDN Options

Popular Open Source Solutions

Figure 1.13: Official Project Logos

Three of these projects are part of LF Networking https://www.lfnetworking.org, a group of projects brought together
to address major industry challenges and increase collaboration.

OpenDaylight https://www.opendaylight.org - Aimed at network programmability and commercial solutions. It provides a
modular platform for easy customization and automation of networks and has been integrated or embedded in many solutions
and network applications.

ONOS https://onosproject.org - A project to produce a network operating system aimed at service providers with an
emphasis on transition from ”brown field” to ”green field” networks.

Tungsten Fabric https://tungstenfabric.io - Once known as http://www.opencontrail.org it can be used for net-
working and security. Their website claims "One To Rule Them All". A single tool which can work with multiple overlays
and stacks providing a single method for multiple goals.

Project Floodlight http://www.projectfloodlight.org - A SDN controller supported primarily by Big Switch Networks

which is provided via Apache-license and is a common choice SDN research.

OpenStack Neutron https://docs.openstack.org/neutron - A project for Network Connectivity as a Service

which provides an abstraction of physical network objects such as routers, networks and subnets. It provides a SDN for
the entire OpenStack cluster, managing a wide range of hardware.

Open Platform for NFV https://www.opnfv.org - A community facilitating the development of network function virtualiza-
tion components across open source ecosystems.

SDN101 c© CC-BY SA4

https://www.lfnetworking.org
https://www.opendaylight.org
https://onosproject.org
https://tungstenfabric.io
http://www.opencontrail.org
http://www.projectfloodlight.org
https://docs.openstack.org/neutron
https://www.opnfv.org

26 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.6 Future Trends

The Future of Open Source SDN

• More collaboration

• Deeper reach into traditional network spaces

• Open source and customer driven solutions

The increase in modularity of the network components has helped the growth of software defined networking. Moving from
proprietary black-box architectures has opened up a new area for growth. New architectures to get increase scaleability,
security and flexibility of IP are rolling out. Sometimes called middlebox networking we will see greater decoupling and
centralization and a movement towards a software-centric view of the network and a further commoditization of hardware.

Functions in other various layers of networking, like SSL termination and load balancing will become part of a decoupled
SDN leveraging software instead of hardware.

SDN101 c© CC-BY SA4

1.7. LABS 27

1.7 Labs

The following lab was completed using an AWS Ubuntu 16.04 m5.large instance. It had 2vCPU and 8GB of memory. The
OpenDaylight controller often will not start properly if the instance does not have at least 8GB. The errors often show in red
in the controller output and will detail the inability of Java to complete a task. I have also removed a firewall as it can add to
the complexity in understanding if a network operation fails because of configuration or being blocked by an outside agent.

The steps should be very similar if you choose a different Linux operating system. Some changes will be necessary, the use
of yum or dnf instead of apt for example. There are several command used in the labs which have lots of sub-commands,
which would be good to investigate after completing the labs.

The use of multiple connections to the node can be helpful. This will allow you to view output immediately in a different terminal
from the one executing the command.

Exercise 1.1: Deploy A Switch Using OVS and Mininet We will start by using Mininet and Open
vSwitch, which are both easy to deploy and configure.

1. Begin by updating the node software. While it is a better practice to execute each command via sudo, for simplicity we
will become and remain root for the exercise.

node-term1$ sudo -i

node-term1# apt-get update

<output_omitted>

Get:37 http://security.ubuntu.com/ubuntu xenial-security/multiverse amd64 Packages [3,456 B]

Get:38 http://security.ubuntu.com/ubuntu xenial-security/multiverse Translation-en [1,744 B]

Fetched 25.5 MB in 4s (5,980 kB/s)

Reading package lists... Done

2. There are several packages we will need to install for this and following labs. We will install them all at once. Depending
on how you built your instance you may need to manage your repositories and install several dependencies.

During the installation you may see a pop-up window asking if Configuring wireshark-common should allow non-
superusers to capture packets. Please use the arrow keys and select yes.

node-term1# apt-get install -y mininet wireshark default-jdk \

openvswitch-common openvswitch-testcontroller

<output_omitted>

3. Use the Mininet utility to create a switch. Note that it is unable to find a default OpenFlow controller and leverages an
OVS bridge instead. Use exit to return to a system prompt. The default topology creates a controller, a switch and two
hosts. Similar to a graphic from the chapter.

4. Run the Mininet utility again with greater verbosity.

node-term1# mn

*** No default OpenFlow controller found for default switch!

*** Falling back to OVS Bridge

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

*** Starting controller

*** Starting 1 switches

s1 ...

SDN101 c© CC-BY SA4

28 CHAPTER 1. SOFTWARE DEFINED NETWORKING

*** Starting CLI:

mininet> exit

5. If you encounter a problem you can pass an option for greater verbosity, via the –verbosity=debug command. This
time you can see that the which command is unable to find the program among the three tried. Exit back to the shell
when done working through the output.

node-term1# mn --verbosity=debug

*** errRun: [’which’, ’controller’]

1*** errRun: [’which’, ’ovs-controller’]

1*** errRun: [’which’, ’test-controller’]

1*** No default OpenFlow controller found for default switch!

*** Falling back to OVS Bridge

<output_omitted>

6. We installed the controller in a previous step, but the name of the program in Ubuntu does not match the name searched
by Mininet. Create a symbolic link so that the controller can be called by Mininet.

node-term1# ln -s /usr/bin/ovs-testcontroller /usr/bin/ovs-controller

7. Run the Mininet utility again. This time you the controller should be found. Exit back to the node prompt when done.

node-term1# mn

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

<output_omitted>

8. Use the debug option again. As you slowly work through the output you will see an attempt to connect to the controller
via telnet which fails. Further along you will find a series of ovs-vsctl commands to create the controller, switches,
interface, and other components. Note that the controller is running

node-term1# mn --verbosity=debug

*** errRun: [’which’, ’controller’]

1*** errRun: [’which’, ’ovs-controller’]

/usr/bin/ovs-controller

0*** errRun: [’grep’, ’-c’, ’processor’, ’/proc/cpuinfo’]

<output_omitted>

added intf lo (0) to node s1

*** s1 : (’ifconfig’, ’lo’, ’up’)

s1

*** Adding links:

*** h1 : (’ip link add name h1-eth0 address 06:b5:9b:d5:a7:12 type veth peer name s1-eth1 address 56:12:e4:cb:3c:24 netns 12466’,)

<output_omitted>

*** Starting 1 switches

s1 ...*** errRun: ovs-vsctl -- --id=@s1c0 create Controller target=\"tcp:127.0.0.1:6633\"

max_backoff=1000 -- --id=@s1-listen create Controller target=\"ptcp:6634\" max_backoff=1000

<output_omitted>

9. In a second terminal session view the active connections using the netstat command.

node-term2# netstat -tulpn

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:6653 0.0.0.0:* LISTEN 10459/ovs-testcontr

tcp 0 0 0.0.0.0:6633 0.0.0.0:* LISTEN 12518/ovs-controlle

SDN101 c© CC-BY SA4

1.7. LABS 29

tcp 0 0 0.0.0.0:6634 0.0.0.0:* LISTEN 10292/ovs-vswitchd

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1262/sshd

tcp6 0 0 :::22 :::* LISTEN 1262/sshd

udp 0 0 0.0.0.0:68 0.0.0.0:* 896/dhclient

10. Return to the terminal running Mininet and look at available commands. From the list then run dump to view current
configuration information. Note the IP and port in use by OVSController c0 which defaults to 127.0.0.1:6633.

mininet> help

Documented commands (type help <topic>):

==

EOF gterm iperfudp nodes pingpair py switch

dpctl help link noecho pingpairfull quit time

dump intfs links pingall ports sh x

exit iperf net pingallfull px source xterm

<output_omitted>

mininet> dump

<Host h1: h1-eth0:10.0.0.1 pid=12457>

<Host h2: h2-eth0:10.0.0.2 pid=12460>

<OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=12466>

<OVSController c0: 127.0.0.1:6633 pid=12450>

11. Return to the second terminal session and use the ovs-vsctl show command to view switch information from the OVS
perspective. Note there are two lines with controller information. One uses parallel TCP to port 6634 and the other to
6633. A view of current processes show two separate processes are running. Also note the bridge for this configuration
is s1.

node-term2# ovs-vsctl show

18f7d986-fdc0-43e9-8fcc-dbb699a18b5f

Bridge "s1"

Controller "ptcp:6634"

Controller "tcp:127.0.0.1:6633"

is_connected: true

fail_mode: secure

Port "s1-eth1"

Interface "s1-eth1"

Port "s1"

Interface "s1"

type: internal

Port "s1-eth2"

Interface "s1-eth2"

ovs_version: "2.5.4"

12. View the OpenFlow information of the s1 switch. We can see the capabilities of the OVS switch as well as port
information.

node-term2# ovs-ofctl show s1

OFPT_FEATURES_REPLY (xid=0x2): dpid:0000000000000001

n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP

actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src

mod_dl_dst mod_nw_src mod_nw_dst mod_nw_tos mod_tp_src mod_tp_dst

1(s1-eth1): addr:56:12:e4:cb:3c:24

config: 0

state: 0

current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max

SDN101 c© CC-BY SA4

30 CHAPTER 1. SOFTWARE DEFINED NETWORKING

2(s1-eth2): addr:32:d0:20:f7:71:f7

<output_omitted>

13. View the current flow tables. As we have not yet done anything with the environment there should only be a CONTROLLER

entry.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=2198.442s, table=0, n_packets=13, n_bytes=1026,

idle_age=2188, priority=0 actions=CONTROLLER:128

14. Now use the snoop command to see the current activity of the switch. We should see some OFPT echo request and
replies. Also note the version of OpenFlow is version 1.3. Leave the command running, and capturing the window, and
return to the other terminal window. Eventually you can use ctrl-c to quit the snoop.

node-term2# ovs-ofctl snoop s1

OFPT_ECHO_REQUEST (OF1.3) (xid=0x0): 0 bytes of payload

OFPT_ECHO_REPLY (OF1.3) (xid=0x0): 0 bytes of payload

15. Return to the terminal running Mininet and use the pingall command to cause all hosts to ping all other hosts.

mininet> pingall

*** Ping: testing ping reachability

h1 -> *** h1 : (’ping -c1 10.0.0.2’,)

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=3.70 ms

<output_omitted>

16. Return to the terminal which continues to run the snoop. You should see new traffic which starts with a OFPT_PACKET_IN

statement and then shows a series of OFPT_FLOW_MOD statements which show an ADD to the flow table.

<output_omitted>

OFPT_PACKET_IN (OF1.3) (xid=0x0): cookie=0x0 total_len=42 in_port=1

(via no_match) data_len=42 buffer=0x0000010d

arp,vlan_tci=0x0000,dl_src=06:b5:9b:d5:a7:12,dl_dst=ff:ff:ff:ff:ff:ff

,arp_spa=10.0.0.1,arp_tpa=10.0.0.2,arp_op=1,arp_sha=06:b5:9b:d5:a7:12,

arp_tha=00:00:00:00:00:00

OFPT_PACKET_OUT (OF1.3) (xid=0x12): in_port=1 actions=FLOOD buffer=0x0000010d

OFPT_PACKET_IN (OF1.3) (xid=0x0): cookie=0x0 total_len=42 in_port=2 (via no_match)

data_len=42 buffer=0x0000010e

arp,vlan_tci=0x0000,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,arp_spa=10.0.0.2,

arp_tpa=10.0.0.1,arp_op=2,arp_sha=52:ac:d2:a2:e1:d7,arp_tha=06:b5:9b:d5:a7:12

OFPT_FLOW_MOD (OF1.3) (xid=0x13): ADD priority=1,arp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=

06:b5:9b:d5:a7:12,arp_spa=10.0.0.2,arp_tpa=10.0.0.1,arp_op=2 idle:60 buf:0x10e

actions=output:1

<output_omitted>

17. Interrupt the snoop using ctrl-c. Look at the current flow tables for the switch again. Note that the entries are removed
when they become stale. If you don’t see any new rules, return to the Mininet terminal and run the pingall again. You
should see the rules then. The rule we saw before is the last among several. Each new rule should match one of the
ADD statements we saw in the snoop. Note the differences between in_port, dl_src and output parts of each line.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=2.327s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=1,vlan_tci=0x0000/0x1fff,dl_src=06:b5:9b:d5:a7:12,dl_dst=52:ac:d2:a2:e1:d7,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:2

cookie=0x0, duration=2.326s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:1

cookie=0x0, duration=2.324s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1

cookie=0x0, duration=2.324s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=1,vlan_tci=0x0000/0x1fff,dl_src=06:b5:9b:d5:a7:12,dl_dst=52:ac:d2:a2:e1:d7,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2

cookie=0x0, duration=2660.668s, table=0, n_packets=25, n_bytes=1978, idle_age=2, priority=0 actions=CONTROLLER:128

SDN101 c© CC-BY SA4

1.7. LABS 31

18. Use the above output and compare to the output of ovs-ofctl show s1 and ovs-vsctl show. You should find the ports
and MAC addresses align with the rules added to the switch.

19. Wait for a couple of minutes. Check the flow table again. Only the controller should be found.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=3297.640s, table=0, n_packets=27, n_bytes=2062,

idle_age=634, priority=0 actions=CONTROLLER:128

20. Return to the Mininet terminal and shut down the switch and hosts by exiting.

mininet> exit

*** Stopping 1 controllers

c0 *** c0 : (’kill %ovs-controller’,)

*** c0 : (’wait %ovs-controller’,)

*** Stopping 2 links

.*** h1 : (’ip link del h1-eth0’,)

.*** h2 : (’ip link del h2-eth0’,)

*** Stopping 1 switches

*** errRun: [’ovs-vsctl’, ’--if-exists’, ’del-br’, ’s1’]

0*** errRun: [’kill’, ’-HUP’, ’12466’]

0s1

*** Stopping 2 hosts

h1 h2

*** Done

completed in 348.787 seconds

node-term1#

Exercise 1.2: Install OpenDaylight Controller In this exercise we will deploy the OpenDaylight SDN
controller. While this is a basic exercise you can view full documentation and learn about all of its features by visiting the
opendaylight.org website. The software downloaded is about 340MB in size and may take a while depending on your
network speed.

1. Become root, if not already.

node-term1$ sudo -i

node-term1#

2. Download the software. In this case as a compressed tar file. Both a short URL and the long URL have been included. To
download an older version you can visit the main product website. The longer URL is: https://nexus.opendaylight.
org/content/repositories/public/org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz

node-term1# wget https://tinyurl.com/yaujslvx -O karaf-0.8.3.tar.gz

<output_omitted>

karaf-0.8.3.tar.gz 100%[==================================>] 336.81M 34.4MB/s in 10s

2018-08-26 21:25:24 (33.2 MB/s) - karaf-0.8.3.tar.gz saved [353170921/353170921]

3. Use the tar command to extract the tarball.

node-term1# tar -xf karaf-0.8.3.tar.gz

4. Change into the new directory. Look at the files and directories available.

node-term1# cd karaf-0.8.3/

node-term1# ls -l

SDN101 c© CC-BY SA4

opendaylight.org
https://nexus.opendaylight.org/content/repositories/public/ org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz
https://nexus.opendaylight.org/content/repositories/public/ org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz

32 CHAPTER 1. SOFTWARE DEFINED NETWORKING

total 56

drwxr-xr-x 3 root root 4096 Aug 8 02:59 bin

-rw-r--r-- 1 root root 76 Aug 8 02:59 build.url

drwxr-xr-x 2 root root 4096 Aug 8 02:59 configuration

-rw-r--r-- 1 root root 1126 Aug 8 02:59 CONTRIBUTING.markdown

drwxr-xr-x 3 root root 4096 Aug 8 02:59 data

drwxr-xr-x 2 root root 4096 Aug 8 02:59 deploy

drwxr-xr-x 3 root root 4096 Aug 8 02:59 etc

drwxr-xr-x 5 root root 4096 Aug 8 02:59 lib

-rw-r--r-- 1 root root 11266 Aug 8 02:59 LICENSE

-rw-r--r-- 1 root root 172 Aug 8 02:59 README.markdown

drwxr-xr-x 25 root root 4096 Aug 8 02:59 system

-rw-r--r-- 1 root root 1987 Aug 8 02:59 taglist.log

5. Take a closer look at the files in the etc/ subdirectory.

node-term1# ls etc/

2c92bff6-6022-4058-97d9-a1edc82fc8d8.xml org.apache.karaf.command.acl.jaas.cfg

all.policy org.apache.karaf.command.acl.kar.cfg

config.properties org.apache.karaf.command.acl.scope_bundle.cfg

custom.properties org.apache.karaf.command.acl.shell.cfg

distribution.info org.apache.karaf.command.acl.system.cfg

equinox-debug.properties org.apache.karaf.features.cfg

java.util.logging.properties org.apache.karaf.features.repos.cfg

jetty.xml org.apache.karaf.jaas.cfg

<output_omitted>

6. Look through the etc/jetty.xml command. Around line 86 you should see a stanza which configures the http-default

settings. Among the settings after you will find jetty.port set to 8181

node-term1# less etc/jetty.xml

<output_omitted>

<Property name="jetty.host"/>

</Set>

<Set name="port">

<Property name="jetty.port" default="8181"/>

</Set>

<output_omitted>

7. While we installed JAVA in the earlier lab we also need to set the JAVA_HOME parameter. You may want to make this a
persistent setting as well.

node-term1# export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

8. Start the OpenDaylight controller. This may take a bit to fully start. Remember if you don’t have enough memory it may
still appear to function but will be slow and/or not function properly.

node-term1# ./bin/karaf

Apache Karaf starting up. Press Enter to open the shell now...

100% [==]

Karaf started in 1s. Bundle stats: 54 active, 55 total

________ ________ .__ .__ .__ __

_____ \ ______ ____ ____ ______ \ _____ ___.__.| | |__| ____ | |___/ |_

/ | ____ _/ __ \ / \ | | __ \< | || | | |/ ___\| | \ __\

/ | \ |_> > ___/| | \| ‘ \/ __ ___ || |_| / /_/ > Y \ |

_______ / __/ ___ >___| /_______ (____ / ____||____/_____ /|___| /__|

\/|__| \/ \/ \/ \/\/ /_____/ \/

Hit ’<tab>’ for a list of available commands

and ’[cmd] --help’ for help on a specific command.

Hit ’<ctrl-d>’ or type ’system:shutdown’ or ’logout’ to shutdown OpenDaylight.

SDN101 c© CC-BY SA4

etc/
etc/jetty.xml

1.7. LABS 33

opendaylight-user@root>

9. You now have a basic controller installed. With a modular approach we can choose to add features. Be aware you may
get a prompt back before the feature has been fully installed and able to respond to requests.

opendaylight-user@root>feature:install odl-restconf odl-l2switch-switch \

odl-mdsal-apidocs odl-dlux-core odl-dluxapps-nodes odl-dluxapps-topology

10. Change to a second terminal session. Use the netstat -tulpn command to view active connections. You should see a
series of Java processes listening, including one listening on port 6633.

node-term2# netstat -tulpn

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:6653 0.0.0.0:* LISTEN 10459/ovs-testcontr

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1262/sshd

tcp6 0 0 :::44444 :::* LISTEN 13850/java

tcp6 0 0 :::35073 :::* LISTEN 13850/java

tcp6 0 0 :::8101 :::* LISTEN 13850/java

tcp6 0 0 :::6886 :::* LISTEN 13850/java

tcp6 0 0 127.0.0.1:46662 :::* LISTEN 13850/java

tcp6 0 0 :::6633 :::* LISTEN 13850/java

<output_omitted>

11. Create another controller, switch and hosts using Mininet. This time we will pass a –controller reference using the IP
address of the node and port 6633. Ensure you don’t see an error or delay as it talks to the ODL controller. We can also
pass various topology options.

node-term2# mn --controller=remote,ip=172.31.xx.yy,port=6633 --topo=tree,2

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2 h3 h4

*** Adding switches:

s1 s2 s3

*** Adding links:

(s1, s2) (s1, s3) (s2, h1) (s2, h2) (s3, h3) (s3, h4)

<output_omitted>

12. Use a web browser and navigate to the IP address of the node. You must include the 8181 port as well as /index.html
to the path. The default user name and password is admin.

SDN101 c© CC-BY SA4

/index.html

34 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Figure 1.14: Login Page

13. Upon logging in you are presented with the current nodes known by the controller. On the left of the page you should
see a link to view the Topology. Upon selecting that link you should see the three switches, but no hosts. The hosts
have not generated any traffic and do not currently have rules.

Figure 1.15: Login Page

14. Return to the second terminal where the Mininet continues to run. Use the pingall command to generate traffic among
the hosts. Then return to the web page. Use the Reload button. You should see the hosts have been added.

mininet> pingall

*** Ping: testing ping reachability

h1 -> h2 h3 h4

h2 -> h1 h3 h4

h3 -> h1 h2 h4

h4 -> h1 h2 h3

*** Results: 0% dropped (12/12 received)

SDN101 c© CC-BY SA4

1.7. LABS 35

Figure 1.16: Login Page

Exercise 1.3: Use Wireshark to Examine Flow Modifications
We installed the Wireshark tool which allows us to capture and examine every packet from a graphical interface. As there
may be a lot of traffic you may want stop the traffic while you investigate the details.

1. Log into the instance in a third terminal. Because I am accessing the node remotely I need to export the graphical
display back to my local node. The use of the SSH -X or -Y may be necessary depending on your connection to the
node.

[laptop ~]$ ssh -Y -i LFS452.pem ubuntu@34.222.15.123

Warning: No xauth data; using fake authentication data for X11 forwarding.

Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-1065-aws x86_64)

<output_omitted>

node-term3$

2. We allowed non-root users to capture packets, but you may still get some errors about certain output files. As you we are
running Mininet in another window you will see several interfaces when wireshark starts. Chose any to see all traffic.
You can also return to this lab later and experiment with various interfaces to learn which may handle various types of
traffic.

node-term3$ sudo wireshark

SDN101 c© CC-BY SA4

36 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Figure 1.17: Login Page

3. Note with Wireshark that the version of OpenFlow can determine if you see output. Start with openflow_v4. After
adding the filter return to the second terminal and cause some rules to be made.

Figure 1.18: Wireshark with Filter

mininet> exit

*** Stopping 1 controllers

<output_omitted>

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=tree,2

<output_omitted>

mininet> pingall

<output_omitted>

4. Experiment with various switch topologies. Use multiple terminals to snoop the OpenFlow traffic while creating the
switches as well as viewing the configuration via the browser, the ovs-ofctl, and ovs-vsctl commands.

SDN101 c© CC-BY SA4

1.7. LABS 37

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=torus,3,3

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=linear,4

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=single,9

SDN101 c© CC-BY SA4

	Software Defined Networking
	Why Software Defined Networking
	Software Defined Networking Explained
	OpenFlow
	OpenDaylight
	Open Source SDN Options
	Future Trends
	Labs

