
SDN101

Software Defined
Networking and You by
Timothy Serewicz

Version 1.0

c© CC-BY SA4

ii

c© CC-BY SA4

The C-ALE (Cloud & Container Apprentice Linux Engineer) is a series of seminars held at existing conferences covering topics
which are fundamental to a Linux professional in the Linux Cloud and Container field of computing.

This seminar will spend equal time on lecture and hands on labs at the end of each seminar which allow you to practice the
material you’ve learned.

This material makes the assumption that you have minimal experience with using Linux in general, and a basic
understanding of general industry terms. The assumption is also made that you have access to your own
computers upon which to practice this material.

More information can be found at https://c-ale.org/

This material is licensed under CC-BY SA4

SDN101 c© CC-BY SA4

Contents

1 Software Defined Networking 1

1.1 Why Software Defined Networking . 3

1.2 Software Defined Networking Explained . 8

1.3 OpenFlow . 19

1.4 OpenDaylight . 24

1.5 Open Source SDN Options . 26

1.6 Future Trends . 27

1.7 Labs . 28

iii

iv CONTENTS

SDN101 c© CC-BY SA4

Chapter 1

Software Defined Networking

1.1 Why Software Defined Networking . 3

1.2 Software Defined Networking Explained . 8

1.3 OpenFlow . 19

1.4 OpenDaylight . 24

1.5 Open Source SDN Options . 26

1.6 Future Trends . 27

1.7 Labs . 28

1

2 CHAPTER 1. SOFTWARE DEFINED NETWORKING

SDN101 c© CC-BY SA4

1.1. WHY SOFTWARE DEFINED NETWORKING 3

1.1 Why Software Defined Networking

Software Defined Networking and You

• What is Software Defined Networking?

• Why does SDN matter?

• Basic Functionality

• Common Solutions

• Future trends

SDN101 c© CC-BY SA4

4 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Why Should I Care?

• Flexibility

• Speed of configuration

• Money

SDN101 c© CC-BY SA4

1.1. WHY SOFTWARE DEFINED NETWORKING 5

Flexibility

• Multiple hardware vendors

• Whole network view

• Wire once, deploy many

• Open APIs

SDN101 c© CC-BY SA4

6 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Speed of Configuration

• Rapid provisioning

• Meet needs of data center virtualization

• Container Orchestration

SDN101 c© CC-BY SA4

1.1. WHY SOFTWARE DEFINED NETWORKING 7

Lower Cost

• Operational cost reduction

• Security costs

• Migration away from non-SDN solutions

SDN101 c© CC-BY SA4

8 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.2 Software Defined Networking Explained

What is Software Defined Networking?

• Decouple the control plane

• Centralize management and reporting

• Programmable network infrastructure

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 9

Decoupled Control Plane

• Packet handling rules

• Locality of data

• Greater flexibility

SDN101 c© CC-BY SA4

10 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Centralize Management and Reporting

• Whole network control

• Virtual view of complete network

• Consolidate multiple products

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 11

Programmable Network Infrastructure

• Optimize the data center

• Leverage Network Function Virtualization

• Easily detect and respond to issues

SDN101 c© CC-BY SA4

12 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Logical View of a Switch

Figure 1.1: Logical view of a switch

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 13

Control, Management, and Forwarding
Planes

Figure 1.2: Relationship between switch planes

SDN101 c© CC-BY SA4

14 CHAPTER 1. SOFTWARE DEFINED NETWORKING

New Packet Steps

Figure 1.3: Detailed Steps for a new packet

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 15

Known Packet Steps

Figure 1.4

SDN101 c© CC-BY SA4

16 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Updating Rules

Figure 1.5

SDN101 c© CC-BY SA4

1.2. SOFTWARE DEFINED NETWORKING EXPLAINED 17

Abstraction of Control Plane

Figure 1.6: Use DAL for remote information

SDN101 c© CC-BY SA4

18 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Whole Network Monitoring and Control

Figure 1.7: Control and Monitor Whole Network

SDN101 c© CC-BY SA4

1.3. OPENFLOW 19

1.3 OpenFlow

OpenFlow

• Specifications from Open Networking Forum

• Message layer

• State Machine

• System Interface

• Configuration

• Not just the destination IP or MAC

• Multiple tables may be referenced

SDN101 c© CC-BY SA4

20 CHAPTER 1. SOFTWARE DEFINED NETWORKING

OpenFlow Table

Figure 1.8

SDN101 c© CC-BY SA4

1.3. OPENFLOW 21

OpenFlow Table Entry

Figure 1.9

SDN101 c© CC-BY SA4

22 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Open vSwitch

• Common in-memory switch

• Fully functional, focused on automated and dynamic network control

• Security, monitoring, QoS, and network protocol interaction of vendor-
provided switches

SDN101 c© CC-BY SA4

1.3. OPENFLOW 23

A Simple Switch and Hosts

Figure 1.10

SDN101 c© CC-BY SA4

24 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.4 OpenDaylight

OpenDaylight SDN Controller

Figure 1.11: OpenDaylight StackSDN101 c© CC-BY SA4

1.4. OPENDAYLIGHT 25

DLUX Network View

Figure 1.12: OpenDaylight DLUX Torus

SDN101 c© CC-BY SA4

26 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.5 Open Source SDN Options

Popular Open Source Solutions

Figure 1.13: Official Project Logos

SDN101 c© CC-BY SA4

1.6. FUTURE TRENDS 27

1.6 Future Trends

The Future of Open Source SDN

• More collaboration

• Deeper reach into traditional network spaces

• Open source and customer driven solutions

SDN101 c© CC-BY SA4

28 CHAPTER 1. SOFTWARE DEFINED NETWORKING

1.7 Labs

The following lab was completed using an AWS Ubuntu 16.04 m5.large instance. It had 2vCPU and 8GB of memory. The
OpenDaylight controller often will not start properly if the instance does not have at least 8GB. The errors often show in red
in the controller output and will detail the inability of Java to complete a task. I have also removed a firewall as it can add to
the complexity in understanding if a network operation fails because of configuration or being blocked by an outside agent.

The steps should be very similar if you choose a different Linux operating system. Some changes will be necessary, the use
of yum or dnf instead of apt for example. There are several command used in the labs which have lots of sub-commands,
which would be good to investigate after completing the labs.

The use of multiple connections to the node can be helpful. This will allow you to view output immediately in a different terminal
from the one executing the command.

Exercise 1.1: Deploy A Switch Using OVS and Mininet We will start by using Mininet and Open
vSwitch, which are both easy to deploy and configure.

1. Begin by updating the node software. While it is a better practice to execute each command via sudo, for simplicity we
will become and remain root for the exercise.

node-term1$ sudo -i

node-term1# apt-get update

<output_omitted>

Get:37 http://security.ubuntu.com/ubuntu xenial-security/multiverse amd64 Packages [3,456 B]

Get:38 http://security.ubuntu.com/ubuntu xenial-security/multiverse Translation-en [1,744 B]

Fetched 25.5 MB in 4s (5,980 kB/s)

Reading package lists... Done

2. There are several packages we will need to install for this and following labs. We will install them all at once. Depending
on how you built your instance you may need to manage your repositories and install several dependencies.

During the installation you may see a pop-up window asking if Configuring wireshark-common should allow non-
superusers to capture packets. Please use the arrow keys and select yes.

SDN101 c© CC-BY SA4

1.7. LABS 29

node-term1# apt-get install -y mininet wireshark default-jdk \

openvswitch-common openvswitch-testcontroller

<output_omitted>

3. Use the Mininet utility to create a switch. Note that it is unable to find a default OpenFlow controller and leverages an
OVS bridge instead. Use exit to return to a system prompt. The default topology creates a controller, a switch and two
hosts. Similar to a graphic from the chapter.

4. Run the Mininet utility again with greater verbosity.

node-term1# mn

*** No default OpenFlow controller found for default switch!

*** Falling back to OVS Bridge

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

*** Starting controller

*** Starting 1 switches

s1 ...

*** Starting CLI:

mininet> exit

5. If you encounter a problem you can pass an option for greater verbosity, via the –verbosity=debug command. This
time you can see that the which command is unable to find the program among the three tried. Exit back to the shell
when done working through the output.

SDN101 c© CC-BY SA4

30 CHAPTER 1. SOFTWARE DEFINED NETWORKING

node-term1# mn --verbosity=debug

*** errRun: [’which’, ’controller’]

1*** errRun: [’which’, ’ovs-controller’]

1*** errRun: [’which’, ’test-controller’]

1*** No default OpenFlow controller found for default switch!

*** Falling back to OVS Bridge

<output_omitted>

6. We installed the controller in a previous step, but the name of the program in Ubuntu does not match the name searched
by Mininet. Create a symbolic link so that the controller can be called by Mininet.

node-term1# ln -s /usr/bin/ovs-testcontroller /usr/bin/ovs-controller

7. Run the Mininet utility again. This time you the controller should be found. Exit back to the node prompt when done.

node-term1# mn

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2

<output_omitted>

8. Use the debug option again. As you slowly work through the output you will see an attempt to connect to the controller
via telnet which fails. Further along you will find a series of ovs-vsctl commands to create the controller, switches,
interface, and other components. Note that the controller is running

node-term1# mn --verbosity=debug

*** errRun: [’which’, ’controller’]

1*** errRun: [’which’, ’ovs-controller’]

/usr/bin/ovs-controller

0*** errRun: [’grep’, ’-c’, ’processor’, ’/proc/cpuinfo’]

<output_omitted>

added intf lo (0) to node s1

SDN101 c© CC-BY SA4

1.7. LABS 31

*** s1 : (’ifconfig’, ’lo’, ’up’)

s1

*** Adding links:

*** h1 : (’ip link add name h1-eth0 address 06:b5:9b:d5:a7:12 type veth peer name s1-eth1 address 56:12:e4:cb:3c:24 netns 12466’,)

<output_omitted>

*** Starting 1 switches

s1 ...*** errRun: ovs-vsctl -- --id=@s1c0 create Controller target=\"tcp:127.0.0.1:6633\"

max_backoff=1000 -- --id=@s1-listen create Controller target=\"ptcp:6634\" max_backoff=1000

<output_omitted>

9. In a second terminal session view the active connections using the netstat command.

node-term2# netstat -tulpn

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:6653 0.0.0.0:* LISTEN 10459/ovs-testcontr

tcp 0 0 0.0.0.0:6633 0.0.0.0:* LISTEN 12518/ovs-controlle

tcp 0 0 0.0.0.0:6634 0.0.0.0:* LISTEN 10292/ovs-vswitchd

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1262/sshd

tcp6 0 0 :::22 :::* LISTEN 1262/sshd

udp 0 0 0.0.0.0:68 0.0.0.0:* 896/dhclient

10. Return to the terminal running Mininet and look at available commands. From the list then run dump to view current
configuration information. Note the IP and port in use by OVSController c0 which defaults to 127.0.0.1:6633.

mininet> help

Documented commands (type help <topic>):

==

EOF gterm iperfudp nodes pingpair py switch

dpctl help link noecho pingpairfull quit time

SDN101 c© CC-BY SA4

32 CHAPTER 1. SOFTWARE DEFINED NETWORKING

dump intfs links pingall ports sh x

exit iperf net pingallfull px source xterm

<output_omitted>

mininet> dump

<Host h1: h1-eth0:10.0.0.1 pid=12457>

<Host h2: h2-eth0:10.0.0.2 pid=12460>

<OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=12466>

<OVSController c0: 127.0.0.1:6633 pid=12450>

11. Return to the second terminal session and use the ovs-vsctl show command to view switch information from the OVS
perspective. Note there are two lines with controller information. One uses parallel TCP to port 6634 and the other to
6633. A view of current processes show two separate processes are running. Also note the bridge for this configuration
is s1.

node-term2# ovs-vsctl show

18f7d986-fdc0-43e9-8fcc-dbb699a18b5f

Bridge "s1"

Controller "ptcp:6634"

Controller "tcp:127.0.0.1:6633"

is_connected: true

fail_mode: secure

Port "s1-eth1"

Interface "s1-eth1"

Port "s1"

Interface "s1"

type: internal

Port "s1-eth2"

Interface "s1-eth2"

ovs_version: "2.5.4"

12. View the OpenFlow information of the s1 switch. We can see the capabilities of the OVS switch as well as port

SDN101 c© CC-BY SA4

1.7. LABS 33

information.

node-term2# ovs-ofctl show s1

OFPT_FEATURES_REPLY (xid=0x2): dpid:0000000000000001

n_tables:254, n_buffers:256

capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP

actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src

mod_dl_dst mod_nw_src mod_nw_dst mod_nw_tos mod_tp_src mod_tp_dst

1(s1-eth1): addr:56:12:e4:cb:3c:24

config: 0

state: 0

current: 10GB-FD COPPER

speed: 10000 Mbps now, 0 Mbps max

2(s1-eth2): addr:32:d0:20:f7:71:f7

<output_omitted>

13. View the current flow tables. As we have not yet done anything with the environment there should only be a CONTROLLER

entry.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=2198.442s, table=0, n_packets=13, n_bytes=1026,

idle_age=2188, priority=0 actions=CONTROLLER:128

14. Now use the snoop command to see the current activity of the switch. We should see some OFPT echo request and
replies. Also note the version of OpenFlow is version 1.3. Leave the command running, and capturing the window, and
return to the other terminal window. Eventually you can use ctrl-c to quit the snoop.

node-term2# ovs-ofctl snoop s1

OFPT_ECHO_REQUEST (OF1.3) (xid=0x0): 0 bytes of payload

OFPT_ECHO_REPLY (OF1.3) (xid=0x0): 0 bytes of payload

15. Return to the terminal running Mininet and use the pingall command to cause all hosts to ping all other hosts.

SDN101 c© CC-BY SA4

34 CHAPTER 1. SOFTWARE DEFINED NETWORKING

mininet> pingall

*** Ping: testing ping reachability

h1 -> *** h1 : (’ping -c1 10.0.0.2’,)

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=3.70 ms

<output_omitted>

16. Return to the terminal which continues to run the snoop. You should see new traffic which starts with a OFPT_PACKET_IN

statement and then shows a series of OFPT_FLOW_MOD statements which show an ADD to the flow table.

<output_omitted>

OFPT_PACKET_IN (OF1.3) (xid=0x0): cookie=0x0 total_len=42 in_port=1

(via no_match) data_len=42 buffer=0x0000010d

arp,vlan_tci=0x0000,dl_src=06:b5:9b:d5:a7:12,dl_dst=ff:ff:ff:ff:ff:ff

,arp_spa=10.0.0.1,arp_tpa=10.0.0.2,arp_op=1,arp_sha=06:b5:9b:d5:a7:12,

arp_tha=00:00:00:00:00:00

OFPT_PACKET_OUT (OF1.3) (xid=0x12): in_port=1 actions=FLOOD buffer=0x0000010d

OFPT_PACKET_IN (OF1.3) (xid=0x0): cookie=0x0 total_len=42 in_port=2 (via no_match)

data_len=42 buffer=0x0000010e

arp,vlan_tci=0x0000,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,arp_spa=10.0.0.2,

arp_tpa=10.0.0.1,arp_op=2,arp_sha=52:ac:d2:a2:e1:d7,arp_tha=06:b5:9b:d5:a7:12

OFPT_FLOW_MOD (OF1.3) (xid=0x13): ADD priority=1,arp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=

06:b5:9b:d5:a7:12,arp_spa=10.0.0.2,arp_tpa=10.0.0.1,arp_op=2 idle:60 buf:0x10e

actions=output:1

<output_omitted>

17. Interrupt the snoop using ctrl-c. Look at the current flow tables for the switch again. Note that the entries are removed
when they become stale. If you don’t see any new rules, return to the Mininet terminal and run the pingall again. You
should see the rules then. The rule we saw before is the last among several. Each new rule should match one of the
ADD statements we saw in the snoop. Note the differences between in_port, dl_src and output parts of each line.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=2.327s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=1,vlan_tci=0x0000/0x1fff,dl_src=06:b5:9b:d5:a7:12,dl_dst=52:ac:d2:a2:e1:d7,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:2

SDN101 c© CC-BY SA4

1.7. LABS 35

cookie=0x0, duration=2.326s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:1

cookie=0x0, duration=2.324s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=2,vlan_tci=0x0000/0x1fff,dl_src=52:ac:d2:a2:e1:d7,dl_dst=06:b5:9b:d5:a7:12,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0,icmp_type=8,icmp_code=0 actions=output:1

cookie=0x0, duration=2.324s, table=0, n_packets=1, n_bytes=98, idle_timeout=60, idle_age=2, priority=1,icmp,in_port=1,vlan_tci=0x0000/0x1fff,dl_src=06:b5:9b:d5:a7:12,dl_dst=52:ac:d2:a2:e1:d7,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0,icmp_type=0,icmp_code=0 actions=output:2

cookie=0x0, duration=2660.668s, table=0, n_packets=25, n_bytes=1978, idle_age=2, priority=0 actions=CONTROLLER:128

18. Use the above output and compare to the output of ovs-ofctl show s1 and ovs-vsctl show. You should find the ports
and MAC addresses align with the rules added to the switch.

19. Wait for a couple of minutes. Check the flow table again. Only the controller should be found.

node-term2# ovs-ofctl dump-flows s1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=3297.640s, table=0, n_packets=27, n_bytes=2062,

idle_age=634, priority=0 actions=CONTROLLER:128

20. Return to the Mininet terminal and shut down the switch and hosts by exiting.

mininet> exit

*** Stopping 1 controllers

c0 *** c0 : (’kill %ovs-controller’,)

*** c0 : (’wait %ovs-controller’,)

*** Stopping 2 links

.*** h1 : (’ip link del h1-eth0’,)

.*** h2 : (’ip link del h2-eth0’,)

*** Stopping 1 switches

*** errRun: [’ovs-vsctl’, ’--if-exists’, ’del-br’, ’s1’]

0*** errRun: [’kill’, ’-HUP’, ’12466’]

0s1

*** Stopping 2 hosts

h1 h2

*** Done

completed in 348.787 seconds

node-term1#

SDN101 c© CC-BY SA4

36 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Exercise 1.2: Install OpenDaylight Controller In this exercise we will deploy the OpenDaylight SDN
controller. While this is a basic exercise you can view full documentation and learn about all of its features by visiting the
opendaylight.org website. The software downloaded is about 340MB in size and may take a while depending on your
network speed.

1. Become root, if not already.

node-term1$ sudo -i

node-term1#

2. Download the software. In this case as a compressed tar file. Both a short URL and the long URL have been included. To
download an older version you can visit the main product website. The longer URL is: https://nexus.opendaylight.
org/content/repositories/public/org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz

node-term1# wget https://tinyurl.com/yaujslvx -O karaf-0.8.3.tar.gz

<output_omitted>

karaf-0.8.3.tar.gz 100%[==================================>] 336.81M 34.4MB/s in 10s

2018-08-26 21:25:24 (33.2 MB/s) - karaf-0.8.3.tar.gz saved [353170921/353170921]

3. Use the tar command to extract the tarball.

node-term1# tar -xf karaf-0.8.3.tar.gz

4. Change into the new directory. Look at the files and directories available.

node-term1# cd karaf-0.8.3/

node-term1# ls -l

total 56

drwxr-xr-x 3 root root 4096 Aug 8 02:59 bin

-rw-r--r-- 1 root root 76 Aug 8 02:59 build.url

drwxr-xr-x 2 root root 4096 Aug 8 02:59 configuration

-rw-r--r-- 1 root root 1126 Aug 8 02:59 CONTRIBUTING.markdown

SDN101 c© CC-BY SA4

opendaylight.org
https://nexus.opendaylight.org/content/repositories/public/ org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz
https://nexus.opendaylight.org/content/repositories/public/ org/opendaylight/integration/karaf/0.8.3/karaf-0.8.3.tar.gz

1.7. LABS 37

drwxr-xr-x 3 root root 4096 Aug 8 02:59 data

drwxr-xr-x 2 root root 4096 Aug 8 02:59 deploy

drwxr-xr-x 3 root root 4096 Aug 8 02:59 etc

drwxr-xr-x 5 root root 4096 Aug 8 02:59 lib

-rw-r--r-- 1 root root 11266 Aug 8 02:59 LICENSE

-rw-r--r-- 1 root root 172 Aug 8 02:59 README.markdown

drwxr-xr-x 25 root root 4096 Aug 8 02:59 system

-rw-r--r-- 1 root root 1987 Aug 8 02:59 taglist.log

5. Take a closer look at the files in the etc/ subdirectory.

node-term1# ls etc/

2c92bff6-6022-4058-97d9-a1edc82fc8d8.xml org.apache.karaf.command.acl.jaas.cfg

all.policy org.apache.karaf.command.acl.kar.cfg

config.properties org.apache.karaf.command.acl.scope_bundle.cfg

custom.properties org.apache.karaf.command.acl.shell.cfg

distribution.info org.apache.karaf.command.acl.system.cfg

equinox-debug.properties org.apache.karaf.features.cfg

java.util.logging.properties org.apache.karaf.features.repos.cfg

jetty.xml org.apache.karaf.jaas.cfg

<output_omitted>

6. Look through the etc/jetty.xml command. Around line 86 you should see a stanza which configures the http-default

settings. Among the settings after you will find jetty.port set to 8181

node-term1# less etc/jetty.xml

<output_omitted>

<Property name="jetty.host"/>

</Set>

<Set name="port">

<Property name="jetty.port" default="8181"/>

</Set>

<output_omitted>

7. While we installed JAVA in the earlier lab we also need to set the JAVA_HOME parameter. You may want to make this a
persistent setting as well.

SDN101 c© CC-BY SA4

etc/
etc/jetty.xml

38 CHAPTER 1. SOFTWARE DEFINED NETWORKING

node-term1# export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

8. Start the OpenDaylight controller. This may take a bit to fully start. Remember if you don’t have enough memory it may
still appear to function but will be slow and/or not function properly.

node-term1# ./bin/karaf

Apache Karaf starting up. Press Enter to open the shell now...

100% [==]

Karaf started in 1s. Bundle stats: 54 active, 55 total

________ ________ .__ .__ .__ __

_____ \ ______ ____ ____ ______ \ _____ ___.__.| | |__| ____ | |___/ |_

/ | ____ _/ __ \ / \ | | __ \< | || | | |/ ___\| | \ __\

/ | \ |_> > ___/| | \| ‘ \/ __ ___ || |_| / /_/ > Y \ |

_______ / __/ ___ >___| /_______ (____ / ____||____/_____ /|___| /__|

\/|__| \/ \/ \/ \/\/ /_____/ \/

Hit ’<tab>’ for a list of available commands

and ’[cmd] --help’ for help on a specific command.

Hit ’<ctrl-d>’ or type ’system:shutdown’ or ’logout’ to shutdown OpenDaylight.

opendaylight-user@root>

9. You now have a basic controller installed. With a modular approach we can choose to add features. Be aware you may
get a prompt back before the feature has been fully installed and able to respond to requests.

opendaylight-user@root>feature:install odl-restconf odl-l2switch-switch \

odl-mdsal-apidocs odl-dlux-core odl-dluxapps-nodes odl-dluxapps-topology

10. Change to a second terminal session. Use the netstat -tulpn command to view active connections. You should see a
series of Java processes listening, including one listening on port 6633.

node-term2# netstat -tulpn

Active Internet connections (only servers)

SDN101 c© CC-BY SA4

1.7. LABS 39

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 0.0.0.0:6653 0.0.0.0:* LISTEN 10459/ovs-testcontr

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1262/sshd

tcp6 0 0 :::44444 :::* LISTEN 13850/java

tcp6 0 0 :::35073 :::* LISTEN 13850/java

tcp6 0 0 :::8101 :::* LISTEN 13850/java

tcp6 0 0 :::6886 :::* LISTEN 13850/java

tcp6 0 0 127.0.0.1:46662 :::* LISTEN 13850/java

tcp6 0 0 :::6633 :::* LISTEN 13850/java

<output_omitted>

11. Create another controller, switch and hosts using Mininet. This time we will pass a –controller reference using the IP
address of the node and port 6633. Ensure you don’t see an error or delay as it talks to the ODL controller. We can also
pass various topology options.

node-term2# mn --controller=remote,ip=172.31.xx.yy,port=6633 --topo=tree,2

*** Creating network

*** Adding controller

*** Adding hosts:

h1 h2 h3 h4

*** Adding switches:

s1 s2 s3

*** Adding links:

(s1, s2) (s1, s3) (s2, h1) (s2, h2) (s3, h3) (s3, h4)

<output_omitted>

12. Use a web browser and navigate to the IP address of the node. You must include the 8181 port as well as /index.html
to the path. The default user name and password is admin.

SDN101 c© CC-BY SA4

/index.html

40 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Figure 1.14: Login Page

13. Upon logging in you are presented with the current nodes known by the controller. On the left of the page you should
see a link to view the Topology. Upon selecting that link you should see the three switches, but no hosts. The hosts
have not generated any traffic and do not currently have rules.

SDN101 c© CC-BY SA4

1.7. LABS 41

Figure 1.15: Login Page

14. Return to the second terminal where the Mininet continues to run. Use the pingall command to generate traffic among
the hosts. Then return to the web page. Use the Reload button. You should see the hosts have been added.

mininet> pingall

*** Ping: testing ping reachability

h1 -> h2 h3 h4

h2 -> h1 h3 h4

h3 -> h1 h2 h4

h4 -> h1 h2 h3

*** Results: 0% dropped (12/12 received)

SDN101 c© CC-BY SA4

42 CHAPTER 1. SOFTWARE DEFINED NETWORKING

Figure 1.16: Login Page

Exercise 1.3: Use Wireshark to Examine Flow Modifications
We installed the Wireshark tool which allows us to capture and examine every packet from a graphical interface. As there
may be a lot of traffic you may want stop the traffic while you investigate the details.

1. Log into the instance in a third terminal. Because I am accessing the node remotely I need to export the graphical
display back to my local node. The use of the SSH -X or -Y may be necessary depending on your connection to the
node.

[laptop ~]$ ssh -Y -i LFS452.pem ubuntu@34.222.15.123

Warning: No xauth data; using fake authentication data for X11 forwarding.

Welcome to Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-1065-aws x86_64)

<output_omitted>

node-term3$

SDN101 c© CC-BY SA4

1.7. LABS 43

2. We allowed non-root users to capture packets, but you may still get some errors about certain output files. As you we are
running Mininet in another window you will see several interfaces when wireshark starts. Chose any to see all traffic.
You can also return to this lab later and experiment with various interfaces to learn which may handle various types of
traffic.

node-term3$ sudo wireshark

Figure 1.17: Login Page

3. Note with Wireshark that the version of OpenFlow can determine if you see output. Start with openflow_v4. After

SDN101 c© CC-BY SA4

44 CHAPTER 1. SOFTWARE DEFINED NETWORKING

adding the filter return to the second terminal and cause some rules to be made.

Figure 1.18: Wireshark with Filter

mininet> exit

*** Stopping 1 controllers

<output_omitted>

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=tree,2

<output_omitted>

mininet> pingall

<output_omitted>

4. Experiment with various switch topologies. Use multiple terminals to snoop the OpenFlow traffic while creating the
switches as well as viewing the configuration via the browser, the ovs-ofctl, and ovs-vsctl commands.

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=torus,3,3

SDN101 c© CC-BY SA4

1.7. LABS 45

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=linear,4

node-term2$ mn --controller=remote,ip=172.31.28.5,port=6633 --topo=single,9

SDN101 c© CC-BY SA4

	Software Defined Networking
	Why Software Defined Networking
	Software Defined Networking Explained
	OpenFlow
	OpenDaylight
	Open Source SDN Options
	Future Trends
	Labs

